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Physical Problem:
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• Planar EM wave normally

incident to dielectric slab.

• EM wave: windowed mi-

crowave signal.

• Reflection of wave off slab

interfaces is observed.

• Properties of slab described

by polarization equation
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Maxwell’s Equations:

∇× ~E = −
∂~B

∂t

∇× ~H =
∂~D

∂t
+ ~J

∇· ~D = ρ

∇· ~B = 0.

~D = ε0 ~E + ~P

~B = µ0
~H + µ0

~M

~J = ~Jc + ~Js

Quantities ~P , ~M, ~J describe material behavior, require constitu-

tive laws to complete. We use: ~M = 0, ~J = σ ~E.
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Debye Polarization Model:

τ ~̇P + ~P = ε0(εs − ε∞) ~E
~D = ε∞ε0 ~E + ~P .

First order differential equation for ~P models permanent dipole

relaxation.

Modification of ~D equation allows for an instantaneous compo-

nent of polarization.

Higher order, and integral models possible as well.
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Interrogation Simulation:

• Current source ~J(t) placed at z = 0. Symmetry makes prob-

lem one-dimensional. ~E = x̂E(z, t), ~H = ŷH(z, t). Slab occu-

pies (z1, z1 + d).

• Parameters (σ, ε∞, εs, τ, d) chosen for the material slab.

• A particular form for the current source is chosen.

• Observations taken at z = 0 show original signal, reflection

off z1 interface, then reflection off z2 interface.
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Forward Problem Example: t = 1.7 ns
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Forward Problem Example: t = 3.4 ns
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Forward Problem Example: t = 5.75 ns
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Forward Problem Example: t = 12.75 ns
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Forward Problem Example: t = 18.7 ns
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Forward Problem Example: z = 0 meters

seconds
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Parameter Values:

We use the following parameter values for our examples.

σ 0.0 mhos/meter
εs 81.1
ε∞ 5.5
τ 8.1× 10−12 seconds

Except for σ, these are the accepted values for water.

Interrogating Signal:

Carrier frequency f ≈ 0.6 GHz to 2.4 GHz or an increasing fre-
quency chirp.

Windowed with rectangular or gaussian pulse.
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Identification Problem:

Given observations of the electric field at z = 0: Ei = E(0, i∆t),

find parameters (σ, ε∞, εs, τ, d) which give the best fit to the data.

“Best Fit” is determined by various criteria. Generally a least-

squares distance between various transformations of the time-

domain data.
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Previous Results:

Time-domain identification of Debye model parameters.

Accurate reconstruction of εs, ε∞, τ in presence of moderate noise

in signal. (< 5%).

Reconstruction of σ diffucut for reasonable values. (×10−5)

Easier to identify τ(εs − ε∞) than ε∞.

Difficulty with depth estimation lead to three step identification

process:
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Effect of incorrect depth:

data with d=0.05

data with d=0.07
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15



Time-domain Error as a function of depth:
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Three Step Method:

Identify (τ, εs, ε∞) with surface reflection. Identify d through re-

turn time of deep reflection. Use as initial guess to estimate

(τ, εs, ε∞, d) to refine estimates of all parameters.

New Distance Measures:

Distance measures based on frequency and time-frequency trans-

formations of the original and simulated data.

Frequency transform: absolute value of DFT of signal.
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Time-Frequency Transform:

The Fourier Transform

f̂(ω) = (Ff)(ω) =
1√
2π

∫ ∞
−∞

f(t)e−ıωt dt

The Short Time Fourier Transform

(Fwf)(ω, τ) =
1√
2π

∫ ∞
−∞

f(t)w(t− τ)e−ıωt dt

w a windowing function such as the Gaussian w(t) = e−t
2
.
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Time-frequency resolution of standard function representations.

ω

t

ω
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Time:

f(t)

Frequency:

(Ff)(ω)

Time-frequency:

(Fwf)(ω, τ)

(Fwf)(ω, τ) provides a measure of the amplitude of frequency ω

at time τ .
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Time-Frequency Transform Example:
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Implementation Details:

Forward simulations done with FE-TD scheme: PW-linear el-

emets in space, Crank-Nicholson scheme in time. Implemented

in Fortran.

Optimization handled by BFGS/Trust region code (Dr. Carter,

ICASE) in Fortran.

Transforms, distance functions, data processing routines are writ-

ten as Octave scripts (free Matlab clone) with interfaces to For-

tran codes written in C++.
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J(d) in time domain for rectangular pulse
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J(d) in frequency domain for rectangular pulse
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J(d) in time-frequency domain for rectangular pulse
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J(d) in time domain for gaussian chirp
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J(d) in time-frequency domain for gaussian chirp
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Tested:

Four input signals. 40 initial parameter sets. Time and Time-

frequency distance measures. (160 runs each)

Results:

Time Time-Frequency
Converged 100 76

Improved on Initial Iterate 24 14
Close to Correct Parameters 11 5
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Future Work:

• Explore time-frequency transformation options to find more

effective smoothers of the objective function.

• Determine optimal objective criteria and input signal combi-

nations for various identification problems

• Add Noise to signal. Estimate noise tolerance of inverse

problem for various objective functions and signal types.
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